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Abstract: We report on the existence of nondiffracting Bessel surface
plasmon polaritons (SPPs), advancing at either superluminal or subluminal
phase velocities. These wave fields feature deep subwavelength FWHM,
but are supported by high-order homogeneous SPPs of a metal/dielectric
(MD) superlattice. The beam axis can be relocated to any MD interface,
by interfering multiple converging SPPs with controlled phase matching.
Dissipative effects in metals lead to a diffraction-free regime that is limited
by the energy attenuation length. However, the ultra-localization of the
diffracted wave field might still be maintained by more than one order of
magnitude.
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1. Introduction

In 1987 Durnin presented experimental evidence on the generation of a high-intensity fo-
cused wave field that kept its transverse spot size unaltered for much longer than its Rayleigh
range [1, 2]. Such a localized radiation mode was called the nondiffracting beam (also the
diffraction-free beam), due to its apparent violation of the natural beam spreading induced by
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free-space propagation. It propagated in a linear medium and was not to be confused with the
spatial solitons, which commonly appear in nonlinear media. In due course of time this sort
of waves became mostly known as the Bessel Beams (BBs), since the profile of the transverse
field followed, in the vast majority of practical realizations, a Bessel function of the first kind.
Since in the domain of spatial frequencies the wave vectors of the constitutive plane waves
were wrapped around a conical surface, similar to the Cerenkov radiation, this lead to a new
appellative of conical waves, employed a few times by some authors. Additionally, for pulsed
beams, the spatiotemporal evolution represented in a meridional plane that contains the BB axis
is shaped as a cross; in this case one preferably speaks of the X-waves.

All these names reflect unique features of this sort of wave fields. In fact, the self-healing
property, which has not been mentioned yet, plays a relevant role in numerous applications,
such as the optical manipulation of micro-sized particles [3], the fabrication of long polymer
fibers induced by the photopolymerization [4] and microchanneling by structural modifica-
tion in glass materials [5], the enhancement of energy gain in inverse free electron lasers and
inverse Cerenkov accelerators [6], and the generation of Bessel photonic lattices imprinted
in photorefractive crystals [7]. The possibility of independently tuning the phase and group
velocities (GVs) of a BB opens the possibility of a number of applications in nonlinear op-
tics [8, 9]. In particular, a number of phenomena was observed: frequency-doubling [10] and
high-order harmonics in the extreme ultraviolet [11] using BBs, resonant self-trapping of BBs
in plasmas [12], the spontaneous formation of unbalanced BBs during ultrashort laser pulse
filamentation in Kerr media [13], and high Raman conversion efficiency in the formation of
GV-matched X-wave pulses [14].

The recent and fast development of plasmonics has propelled the irruption of BBs on the
stage, with the excitation of surface plasmon polaritons (SPPs) in several applications. Kano
et al. reported the first experimental result concerning an efficient excitation of local SPPs, by
using the zeroth-order BB [15]. More recently, radially-polarized BBs have been demonstrated
to provide the TM polarization required for the effective coupling to the SPPs, which can be
used as a virtual probe for the two-photon fluorescence microscopy [16]. We point out that the
evanescent BBs can be obtained irrespective of the transverse profile of the radially-polarized
impinging beam [17–19]. In the initial case the incidence of the BB is placed normally to
the MD interface, leading to the invariance of the transverse Bessel pattern. This property has
been observed also in all-dielectric stratified structures [20–27]. In plasmon-driven evanescent
BBs, however, the wave field experiences an on-axis variation, which follows an exponential
decay. With this regard in mind, we remark that the intensity of a diffraction-free wave field
that propagates in 1D structured media is rigorously flat if the beam injection into the photonic
device is performed under grazing incidence [28, 29]. Nevertheless, the inherent anisotropy
of the strati-formed media prevents the nondiffracting beam from exhibiting an azimuthally-
symmetric amplitude distribution [30–34].

In this paper we demonstrate the existence of a SPP that evolves without distortion within an
energy-attenuation length and whose in-plane profile traces a Bessel function along the trans-
verse direction relative to the beam axis. This should be set apart from the evanescent BBs
mentioned before, whose centro-symmetric amplitude distribution features converging and di-
verging waves on the metal/dielectric interface. Consequently, this type of subwavelength plas-
monic field is free of diffraction on the flat surface and remains highly confined around the
beam axis. With this result, it is proved that the recently introduced Airy plasmon is not the
only nondiffracting surface plasmonic wave [35]. Fundamental differences between the surface
waves and 2D waves are exemplified, to understand how unconfined sinusoidal waves, which
are the counterpart of the conical waves in 2D, assist in the formation of highly-localized non-
diffracting surface waves.
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Fig. 1. (a) Geometry of the multilayered nanostructure; thin silver nanomembranes of wm =
10 nm are impressed into fused silica εd = 2.25 at a rate of 3.33 μm−1. (b) Dispersion
curves of guided modes for N = 11. Dashed red line is the dispersion of ordinary SPP;
green lines represent bandgap edges. (c) Intensity distribution |hxm|2 for several modal
solutions at λ0 = 1.55 μm.

2. High-order plasmonic modes

We consider a monochromatic surface wave propagating with a wavevector k in a MD multilay-
ered structure consisting of a finite number N of metallic layers and N −1 slabs of a dielectric
material. The layers are alternatively placed and stacked around a solid cladding, as shown in
Fig. 1(a). The widths of the metallic slabs and the dielectric slabs are denoted by wm and wd .
The y axis is set perpendicular to the MD interfaces, and x and z axes are situated in one of
the interface planes. A discrete function ε(y) characterizes the relative dielectric constant of the
stratified medium. Particularly, it takes a real value εd in the dielectric films and a complex-
valued εm in the metallic layers. Material properties of metals can be appropriately described
by the Drude-Lorentz model, from which the frequency-dependent permittivity follows the for-
mula

εm(ω) = 1− ω2
p

ω (ω + iγ)
. (1)

Here ωp is the plasma frequency of the metal and γ is the damping factor related to the losses
in the material. For silver, ωp = 12.9 fs−1 and γ = 0.08 fs−1. Without loss of generality we
assume that εd also denotes the dielectric constant of the cladding.

A MD stratified medium commonly provides a number of electromagnetic field modes,
which we identify by an index m = {1,2, · · · ,M}. For convenience, we cast the magnetic field
of each plasmonic mode as

�Hm(x,y,z) = �hm(y)exp [ikm (zcosθm + xsinθm)] (2)

where km is the wavenumber of the mth-order surface mode and θm determines its direction
of propagation in the plane. The wavenumber km is frequently given in terms of the plasmonic
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spatial frequency kp = c/ωp. Furthermore, in order to excite surface resonances in the inter-
faces of our device, p-polarized waves should be employed. Therefore, we consider TM waves
whose magnetic field is confined in the xz plane, that is�hm = (hxm,0,hzm). We point out that
the magnetic field is solenoidal, leading to the equation hzm = − tanθmhxm. We conclude that
the problem may be fully described in terms of the scalar wavefield hxm, from which other
electromagnetic components may be derived.

Using the standard matrix formulation for isotropic layered media, we can describe unam-
biguously the amplitude hxm(y) distributed inside our device. The general procedure may be
followed from Ref. [33]. For a large number N of metallic strata, the periodic medium operates
just as a photonic lattice whose unit cell translation matrix is here denoted by T . The 2×2 ma-
trix T depends upon the wavenumber km of the surface plasmon, but it is otherwise independent
of the angular coordinate θm. For an ideally unbounded photonic crystal, the values of km are
determined by the dispersion equation [36]:

2cos(kymL) = T11 +T22 , (3)

where L = wd +wm is the period of the lattice and kym is a Bloch wavenumber. As a conse-
quence, the values of km are restricted to allowed bands, which emerge when the trace of T
spans the region from −2 to 2, as depicted in Fig. 1(b). In the case presented we neglected ma-
terial losses, by taking γ = 0; thus T became unimodular. Since the periodic structure is finite,
solutions are derived from the equation

[
T N

]
11 = 0, which is equivalent to [37]

(T11 −T22) tan(NkymL)+2sin(kymL) = 0 . (4)

In the example considered N = 11. Now, the wavenumbers km form a discrete set of M real
numbers. This is shown in Fig. 1(b) where we obtained M = 12 high-order SPPs. The modal
field decays exponentially in the limit |y| → ∞ and it may vary substantially within the stratified
medium, as shown in Fig. 1(c). However, these surface waves are homogeneous in the xz plane,
as shown in Eq. (2). In general, the larger the number N of layers, the higher the number
M = max(m) of plasmonic modes sustainable in such a MD nanostructure.

3. Diffraction-free sinusoidal beams

Strictly speaking, the homogeneous surface wave disclosed in (2) represents a nondiffracting
beam whose propagation constant km is governed by the MD multilayer. However, we may
modify ad lib the spatial frequency β ≥ 0 along the beam axis of a nondiffracting SPP, here
taken to be the z axis, provided β ≤ km. For that purpose we consider the superposition of
two homogeneous surface plasmons of the same wavenumber km, but different directions of
propagation, given by the angles +θm and −θm, respectively, as shown in Fig. 2(a). The pro-
jections of the wave vectors onto the z axis coincide with β = km cosθm leading to a phase
front advancing at a velocity vp = ω/β along such a direction. Assuming additionally that both
plasmonic modes become equal in strength |hxm|, the net flux of power along the x axis is zero.
The resultant field Hxm = hxm(y)exp(iβ z)cos(kxmx+ϕm) yields Young fringes whose maxima
are controlled by the spatial frequency kxm = km sinθm and the dephasing ϕm of the surface
plasmons [see Fig. 2(b)].

We point out that the sinusoidal SPP has an effective mode index

neff ≡ c
vp

=
β
k0
, (5)

which is bounded by that of the surface wave, nm = km/k0, where k0 = 2π/λ0. In other words,
the sinusoidal SPP runs faster than a single-mode SPP. In general, 0 < neff <

√
εd , leading to a
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Fig. 2. Formation of a nondiffracting cos beam mediated by SPPs on a silver-fused silica
interface: (a) Sketch of the wavevectors distribution and (b) contours of intensity |Hx|2
in the xz plane at λ0 = 1.55 μm. Excitation of multiple high-order SPPs is schematically
represented in (c) using here every high-order SPP involved. (d) Intensity distribution in
the xz plane running with M = 12 modes. The quadrature (6) on the surface y = y0 is
performed for a Bessel function of k⊥ = 5.90 μm−1 shown in red. The propagation constant
is β = 6.12 μm−1 in (b) and (d).

superluminal signal, if it is compared with a plane wave traveling through the bulk fused silica.
It may happen, however, that

√
εd < neff < nm, inducing a subluminal velocity of the phase

fronts. This abnormal result is caused by the presence of the metallic aggregate and it cannot
be found in diffraction-free beams propagating in bulk dielectric media. In our numerical sim-
ulations we have made use of a propagation constant β = 6.12 μm−1 which, in practical terms,
is associated with a luminal effective-mode index neff = 1.51 �√

εd at telecoms wavelengths.

4. Ultra-confined modes

The nondiffracting sinusoidal beam driven by monomode SPPs is clearly unconfined [35]. Note
that such a wave interference is practicable for any order m of the mode. Therefore, we may
conceive a coherent superposition of plasmonic cosine waves exhibiting the same propagation
constant β along the z axis, provided that β ≤ km for all m involved. This condition fixes the
values of θm, as outlined in Fig. 2(c) for the twelve distinct SPPs. Moreover, localization around
the beam axis, set on a given MD interface y= y0 at x= 0, is achieved by adapting the individual
dephases such that ϕm = 0, giving

Hx = exp(iβ z)
M

∑
m=1

hxm(y)cos(kxmx) . (6)

The superposition proposed in Eq. (6) is not enough by itself to generate a localized wave
field inside the MD device. For that purpose we manipulate the amplitudes hxm(y0) in order to
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Fig. 3. (a) Intensity pattern of the nondiffracting Bessel plasmon in the xy plane for a phase
matching at the top surface of the central layer. (b) The same as in (a) for a phase matching
at the uppermost MD interface. (a) 3D view of the multilayered device and the surface BB
generated in (b).

match their phases at the beam axis. Furthermore, we seek for values of hxm(y0) leading to a
field Hx(x,y0,0) to trace a Bessel profile. We may express the zeroth-order Bessel function as

J0 (k⊥x) =
∫ k⊥

0
f (k⊥,kx)cos(kxx)dkx , (7)

where f = 2/π
√

k2
⊥− k2

x . For convenience we assume that the arbitrary frequency k⊥ is higher
than any kxm involved. Our procedure is based on the fact that the integral (7) approaches the
series expansion (6) given at (x,y0,0) by means of a numerical quadrature with preassigned
nodes kxm [38]. The solutions hxm(y0) = f (k⊥,kxm)

∫
Lm (kx)dkx of the quadrature, expressed in

terms of the Lagrange polynomials Lm, provide a wave field through Eq. (6) whose intensity on
the MD interface is approximately J2

0 (k⊥x). The resulting field is here called the nondiffracting
Bessel plasmon. This is depicted in Fig. 2(d) using all M = 12 modes involved at λ0 = 1.55 μm.
The central part of the waveform is accurately represented by the Bessel function, whose highest
main peak has an intensity FWHM Δx = 0.38 μm. The error visible in the wings comes from
difference between the finite series expansion and the integral involving Bessel function.

The validity of this procedure is evident near the beam axis for values of β close to
k1 = min(km), causing the coefficients hxm(y0) ≥ 0 to be in phase. If the number M of modes
becomes large, we may conveniently break up the integral (7) into several parts, leading to the
well-known compound rules [38]. Occasionally, we may disregard some modal solutions in
Eq. (6), without significant loss of accuracy. Finally, the error term of the quadrature formula
decreases for k⊥ approaching the maximum value of all kxm involved, that is kxM .

After following the procedure given above, the oscillatory superposition (6) yields the high-
est intensity achievable at x = 0 on the MD surface y = y0. Under ordinary conditions it will not
be found at a point out of the beam axis, where such a phase matching holds. As a consequence,
a strong confinement of the plasmonic BB is expected to occur around (x,y) = (0,y0). Note,
however, that nonlocality of high-order SPPs [39] leads to a considerable disparity in intensity
from one interface to the other, as exhibited in Fig. 1(c). For instance, a gain in outlying in-
terfaces is achieved in detriment to the central surfaces, by considering the SPP of propagation
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Fig. 4. (a) Dispersion contour for λ0 = 1.55 μm and resultant directions of�u for the excited
SPP modes. Thick arrows indicate group-velocity directions, and thin arrows stand for
phase-velocity vectors whose origin is shifted to ky = π/L for clarity. (b) The same as
Fig. 3(b), including directions of energy flow intersecting at the beam axis.

constant k2 = 6.16 μm−1. We conclude that it is propitious for a phase matching at the cladding
boundaries, but it leads to spurious sidelobes in the case when the beam axis is set around the
center of the layered waveguide. Contrarily, the SPP of k12 = 8.45 μm−1 enhances the field in
the central part of the metal-dielectric structure, which benefits the bright spots traveling on a
MD interface near the midpoint. We point out that some SPPs will be useful for both cases, as
displayed for k6 = 7.36 μm−1, but others like k11 = 8.38 μm−1 might disable light confinement
in the mentioned regions.

In Fig. 3 we represent |Hx|2 derived from Eq. (6) when the phase matching is boosted at
different surfaces of the metal-dielectric nanostructure. In Fig. 3(a) the phase matching is ac-
complished on the interface that belongs to the central silver film. For convenience we discarded
5 plasmonic modes with indices m = {1,2,7,9,11}, which induced a field localization out of
the beam axis. The numerical quadrature was set for the BB that has a transverse frequency
k⊥ = 5.90 μm−1. The anisotropic spot displays a subwavelength FWHM Δy = 160 nm along
the y axis, and an in-plane FWHM Δx = 416 nm. In Fig. 3(b) the beam axis is relocated on
the boundary of the MD device and the cladding. In this case we employed 8 different surface
modes (from m = 1 to m = 8) for the Bessel quadrature, with k⊥ = 5.20 μm−1. As a conse-
quence, the FWHM Δx = 430 nm results in a slightly higher value than that obtained above,
otherwise Δy = 113 nm. This is also illustrated in Fig. 3(c) by means of the full 3D arrange-
ment. Note that the transverse wave field in (a) is essentially different from (b), in spite of using
roughly the same in-plane Bessel distribution.

The control of the field is initially established in the xz plane, however, out-of-plane inten-
sity is determined by the geometry and materials composing the multilayered waveguide. The
Bessel-like distribution along the x axis cannot be maintained in other directions, due to the
intrinsic anisotropy of the stratified medium. Moreover, the field of the Bessel plasmon is en-
hanced along distinctive paths in the transverse xy plane. These characteristic directions are
usually associated with those of the energy flow [40]. To obtain the lengthwise paths where the
field is confined near the beam axis, we calculate the Poynting vector for each homogeneous
SPP. This procedure is rendered possible by the following important result: The group velocity
�um = dω/d�ktm represents the average Poynting vector in the xy plane divided by the average
energy density for every Bloch mode of the MD lattice, where�ktm = (kxm,kym). Accordingly,
the energy flux of the nondiffracting Bessel plasmon travels normally to the beam axis along
the gradients provided from the dispersion contour.

Figure 4(a) shows the dispersion contour for the lossless device given in Fig. 1(a) at a fre-

#151987 - $15.00 USD Received 28 Jul 2011; revised 2 Sep 2011; accepted 2 Sep 2011; published 22 Sep 2011
(C) 2011 OSA 26 September 2011 / Vol. 19,  No. 20 / OPTICS EXPRESS  19579



λ0

z

x

H
x(0

, y
0, 

z)
2

100 200 300 400 500

0.001

0.01

0.1

1

z/λ

Hx(x, y0,0) 2

z = 0
z = 10 λ
z = 20 λ
z = 200 λ

-6 -4 -2 0 2 4 6

1.0

x/λ

(a)

(b) (c)
0

1

Fig. 5. Numerical experiment with γ = 0.08 fs−1 for silver. (a) Surface distribution of the
initiated BB in the xz plane. (b) Evolution of the intensity along beam axis. The dashed
line represents the asymptotic behavior of the on-axis intensity that is valid when a sin-
gle long-range SPP contributes effectively in Eq. (6). (c) Transverse intensity distribution
normalized at the beam axis for different propagation distances.

quency ω = 0.0942ωp, that corresponds to the vacuum wavelength λ0 = 1.55 μm. The photonic
band structure of this 1D MD crystal can be calculated numerically using Eq. (3). For each plas-
monic Bloch mode we present a straight line whose slope sm is governed by the gradient com-
puted from the dispersion contour, that is the direction of the vector �um, as sm = [�um]y / [�um]x.
Note that the 1st- and 2nd-order SPPs are located in the bandgap of the periodic MD medium
and therefore are excluded from the present analysis. The strongly scattering MD lattice modi-
fies the dispersion relation of light so much that the dispersion contour is far from being circular.
As a result, the velocities �um involved are clumped into two classes, including low numerical
aperture wavevectors whose slopes ±sm do not differ substantially. In Fig. 4(b) we represent
the straight lines intersecting on the beam axis where the phase matching is accomplished, as
shown in Fig. 3(b). We verify that light is bounded primarily at regions marked by the stream-
lines of the Poynting vectors associated with each plasmonic mode.

5. Dissipation effects

Purely diffraction-free Bessel plasmons described above exist assuming an ideal conductor
with γ = 0. Excitations of free electrons of real metals however suffer damping. Therefore, we
consider now the case when γ in Eq. (1) is no longer zero and with it the SPP propagation con-
stant km becomes complex. The traveling SPPs are damped with an energy attenuation length
lm = [2Im(km)]

−1. As a consequence, the nondiffracting nature of plasmonic BBs is preserved,
but each mth-order SPP contributing in the summation of Eq. (6) runs a distance shorter than its
propagation length lm. This effect is illustrated in Fig. 5(a). The phase fronts of the field Hx ad-
vance with a constant velocity, provided β = Re(km)cosθm is conserved. The modal angle θm

brings to effect that each causal plasmonic signal travels its own distance lm, to reach the beam
axis at the z axis coordinate lm/cosθm. In our numerical simulation l1 = 267 μm, l2 = 45.0 μm,
and lm decreases fast at higher m, up to l11 = 3.09 μm and l12 = 3.06 μm; however θm 	 1
leading to an incessant drop of higher mth-order terms taking part in the summation in Eq. (6).
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Consequently, the on-axis intensity is reduced by a factor 1/e at z = 6.8 μm, as shown in
Fig. 5(b), which is primarily determined by the energy attenuation lengths of the highest-order
SPPs. Fig. 5(c) elucidates how the Bessel profile of the nondiffracting plasmon evolves toward
a cosine amplitude distribution. This evidences that the 1st-order sinusoidal SPP contributes
exclusively to the wave superposition (6) at sufficiently long distances.

6. Conclusions

In conclusion, we have demonstrated the existence of nondiffracting Bessel plasmons which, in
difference to the Airy plasmons, travel along a straight trajectory. In our numerical simulations,
light confinement is sustained in bulk fused silica, by inserting a silver thin-film aggregate
with a period of L = 0.30 μm. We have analyzed a device including 11 nanomembranes of
10 nm each, operating at telecom wavelength λ0 = 1.55 μm. A Bessel wave field with inten-
sity FWHM Δx = 0.38 μm is guided along the metal/dielectric flat interface at a propagation
constant β = 6.12 μm−1, leading to a luminal phase velocity vp = 0.66c. The origin of this in-
teresting phenomenon lies in the phase-matched excitation of superlattice of high-order SPPs.
Dissipative effects in silver leads to a diffraction-free regime that is limited by energy attenu-
ation length of l = 6.8 μm. However, localization about the beam axis is maintained along a
range which is higher than l by more than one order of magnitude.
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